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We present an experimental study demonstrating that rotation has a pronounced 
effect on currents induced by selective withdrawal of fluid from a density-stratified 
reservoir. Our observations show that initiating outflow from the reservoir generates 
Kelvin shear waves. These waves propagate cyclonically around the perimeter of the 
reservoir, establishing an anticyclonic withdrawal-layer flow. This flow accelerates 
owing to the production of relative vorticity by compression of ‘planetary ’ vorticity. 
The withdrawal-layer thickness as shown by vertical profiles of the horizontal 
velocity grows with time. Separation of the side-wall boundary layers in the corners 
of the tank causes the spun-up flow to eventually break up into a series of counter- 
rotating gyres. We also present a model that describes many features of the spin-up 
process observed before onset of separation and subsequent gyre formation. The 
model shows that vertical diffusion of vorticity plays an important role in the spin- 
up process, leading us to conclude that apparent thickening of the withdrawal layer 
over time, as seen in changes in the velocity profile, is associated with the vertical 
diffusion of the spun-up vorticity. 

1. Introduction and background 
The presence of a stable density stratification in storage reservoirs means that 

water withdrawn at a particular elevation comes primarily from those strata closest 
to the level of the sink. Selective withdrawal is well known to engineers, who often 
make use of this phenomenon in the design of offtakes in order to optimize the 
quality of stored and released waters. Suitable design criteria (see Imberger 1980) 
have been derived mainly from experiments and theory concerned with withdrawal- 
layer dynamics in the absence of rotation. The neglect of rotation, a t  least for small 
and medium-size reservoirs, is frequently justified using the argument that most 
reservoir basins are too narrow for rotational effects to be important (see Patterson, 
Hamblin & Imberger 1984). However, simple scaling arguments such as those 
advanced by Imberger & Hamblin (1982) suggest that this may not always be the 
case. 

Some attention has previously been devoted to the effects of rotation on selective 
withdrawal. Whitehead (1980) and Kranenburg (1980) studied axisymmetric, 
linearly stratified and layered flows into centrally located offtakes (sinks). 
Whitehead’s theory suggested that fluid flowing inwards towards the sink would 
develop an appreciable amount of swirl, which would force the radial pressure 
gradient to strengthen with time and thus cause the withdrawal layer to thicken. 
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However, his quasi-steady, inviscid theory did not explain how the swirl would 
actually evolve ; instead, he assumed that the azimuthal velocity distribution would 
be that of a steady, source-sink pair. In  contrast, Kranenburg (1980) analysed in 
detail the transient flow for the case of two layers of different density. Unfortunately, 
the prominent role played by bottom and interfacial Ekman layers in determining 
this flow’s development prohibits application of his results to the case of a continuous 
stratification, because a continuous stratification tends to suppress Ekman suction 
(Greenspan 1968). However, he did study the flow resulting from withdrawal from an 
homogeneous layer overlying a stratified region, and found that the stratified region 
‘spun-up’, i.e. developed swirl, owing to vertical diffusion of vorticity from the 
homogeneous region. 

It is clear from Kranenburg’s work, as well as that of many others (e.g. Gill 1976, 
1982), that steady flows in which Coriolis forces are important cannot be properly 
analysed without considering how they are established. In this paper we shall focus 
upon the establishment and evolution of the flow of a linearly stratified fluid into a 
point sink situated on one wall of a rectangular reservoir. In the next section we shall 
present a qualitative theory outlining how rotation can affect selective withdrawal. 
This qualitative theory provides a framework for understanding the experimental 
results presented in $4. In $5  we provide a more refined theory describing the long- 
term spin-up of the withdrawal flow that we observed in our experiments. Finally, 
we discuss and summarize our results in $6. 

2. A description of selective withdrawal in a rotating fluid 
2.1. Internal wave dynamics and $ow establishment 

Gill’s (1976) analysis of gravitational adjustment in a rotating channel shows that 
rigorous analysis of the establishment of selective withdrawal in a rotating fluid is a 
difficult task. However, we can obtain a qualitative description of the effect of 
rotation on selective withdrawal by using Gill’s results to understand how rotation 
might modify the waves that establish the withdrawal layer in the absence of 
rotation (Imberger, Thompson & Fandry 1976), and thereby alter the structure of 
the withdrawal flow as a whole. 

When stratified fluid starts to flow into a sink, a withdrawal layer of limited 
vertical extent forms near the sink, generating internal waves (known as shear 
waves) which alter the potential flow field away from the sink so that it matches that 
a t  the sink (Pao & Kao 1974). Shear waves travel at the appropriate long-wave 
speed ; in a linearly stratified fluid of depth H and buoyancy frequency N ,  the nth 
mode (i.e. the one having n velocity nodes) travels at  a speed, C,, given by Pao & Kao 
(1974) as 

Details of the establishment of the withdrawal layer and the hierarchy of dynamic 
balances possible are described by Imberger et al. (1976), who present a successful 
classification scheme, based largely on shear-wave dynamics, which is valid for line 
sinks. 

Lawrence (1980) (see also Ivey & Blake 1985) extended Imberger et aZ.’s analysis 
to account for the case of axisymmetric withdrawal through a point sink. According 
to Lawrence, an inertial layer carrying a volume flux Q will reach a thickness 

C, = NH (nn)-’. (1) 

6 = O ( & W ) .  (2) 
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at a distance X from the sink a t  a time T, such that 

NT, = O(X&l) ,  (3) 

i.e. T, is the time required for a wave with vertical wavelength 6 to reach X. Spigel 
& Farrant (1984) found that (2) is valid for point sinks in channel-like reservoirs 
(rather than cylinders) when 6 < B, the width of the reservoir. According to (2) and 
(3), the time required to initially establish the layer near the sink is O(N-l). If, as in 
most natural situations, N % f (f is the Coriolis parameter), the withdrawal layer is 
established before rotation can influence the flow: consequently S will initially be 
independent off. 

As the shear waves generated by initiating the flow propagate away from the sink, 
they must be modified by rotation. The influence of rotation on the nth-mode shear 
wave is determined by the magnitude of the Rossby radius of that mode (Gill 
1976) 

R, = C, f - '  (4) 

relative to the width of the reservoir, B. As shown by Gill, if (R, B-l) > 1, rotation 
has little effect on the wave front or the flow which the wave sets up. On the 
other hand, Gill's analysis (as applied to the problem a t  hand) also shows that if 
(R, B-l) < 1, the front is composed of both a continuous spectrum of dispersive 
Poincar6 waves which travel a t  speeds less than C,, and a single, non-dispersive 
Kelvin wave, which travels a t  a speed equal to C,. 

The velocity field associated with a Kelvin wave decays exponentially (with an e- 
folding length equal to R,) across the channel. As sketched in figure l ,  if the velocity 
a t  the wall Y = 0 is U,(Y) ,  the velocity field induced by the Kelvin wave is 

U ( 2 ,  Y )  = U,( Y )  exp ( -  YR;l). ( 5 )  

Gill found that after the passage of the initial wave front, the steady flow took 
the same form as the Kelvin-wave part of the wave front; implying that when 
(R, B-l) 4 1, the steady flow is confined to a narrow coastal jet of width O(R,). 
Moreover, since the Kelvin wave propagates with the wall on its right for f > 0 
(looking in the direction the wave is moving), the flow towards the sink develops with 
the wall on its left, i.e. is anticyclonic, rather than cyclonic as has been found for 
rotating gravity currents (e.g. Maxworthy 1983). Since ( 6 / H )  4 1,  several shear- 
wave modes will probably be generated (Imberger et al. 1976) ; consequently the flow 
observed a t  any level will be a superposition of flows having different Rossby radii, 
because (C,/NH) - n-l and hence R, - n-'. Thus we surmise that while a selective 
withdrawal flow might not exhibit the clear coastal jet seen for a single mode, it may 
still exhibit considerable lateral variation in the withdrawal-induced flow. 

Since the shear wave determining the final withdrawal-layer thickness has a phase 
speed of NS, a parameter expressing the importance of rotation to selective 
withdrawal is the Burger number, 

S = NS(fB)- ' .  (6) 

Based on the preceding discussion, when S 4 1 we expect large cross-channel 
variations in the horizontal flow, whereas when S 9 1,  rotation should not affect the 
flow. However, because the order-of-magnitude argument leading to (6) is 
approximate, conditions leading to values of S in excess of 1 may result in flows that 
are significantly influenced by rotation. 

13 FLM 199 
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Shear-wai 

FIQURE 1 .  A sketch showing the spatial structure of a Kelvin shear wave. 

2.2. Flow spin-up 
The arguments outlined above suggest that the selective withdrawal flow observed 
in the absence of rotation can also tell us a great deal about the creation of relative 
vorticity by vortex compression in the presence of rotation (Kranenburg 1980). In 
the absence of rotation, the vertical velocity is approximately independent of X and 
Y ,  the horizontal coordinates (except near the sink) so that (for 2 positive 
upwards) 

in the withdrawal layer, and zero above and below the withdrawal layer (Spigel & 
Farrant 1984). Here, A is the surface area of the reservoir and the subscript 2 refers 
to differentiation with respect to 2, the vertical coordinate. Equating the rate of 
change of relative vertical vorticity with its production by compression of planetary 
vortex filaments gives 

where I: = a, V-a, U .  Thus if (7) were valid for rotating fluids, we would estimate 

az W N - (&/A&) 17) 

&r 5 -fa, w, (8) 

that by the-time 

the time required to empty the withdrawal layer, 5 - f. A better model of this process 
is one that includes the vertical diffusion of vorticity, the advection of low-vorticity 
fluid from above, and the reduction of vortex compression as 5 approaches f. These 
factors will all tend to keep g somewhat smaller thanf. Such a one-dimensional model 
is pursued in $5.  
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Axis of rotation e 
From overhead tanks n 

FIGURE 2. A sketch of the experimental apparatus. Note that the sink is shown in one of the three 
locations used in the study, and that the lighting configuration is that used in experiments 1-9. 

2.3. Summary 

The discussion above presents two conclusions which we tested experimentally : (i) 
the flow will be initially established by Kelvin waves and will therefore be 
anticyclonic ; (ii) over a time proportional to Tb, vertical divergence of the vertical 
velocity will generate anticyclonic vorticity of order of magnitude f. 

3. Experimental apparatus and procedures 
All of the experiments were performed in a rectangular channel mounted on a 

rotating table (figure 2) described in Maxworthy (1983). The test section (dimensions : 
3.24 m long; 0.58 m wide) was located in the centre of a longer tank so that the two 
outer sections of the tank could be used to store fluid withdrawn from the test 
section. In one experiment, exp. 13, a false wall was placed along the centreline of the 
channel running from the wall at X = 0 to within 290 mm of the wall at X = L. This 
was done to obtain a value of S > 1, while maintaining a stable rate of rotation of the 
table. 

Two offtakes were used in the experiments. The first, used in experiments 1-9, was 
a pipe mounted approximately 10 mm from the wall with its open end approximately 
90 mm above the bottom of the channel. The section was a section of 6 mm tubing 
with an elbow attached at its end such that the centreline of opening of the elbow 
was 90 mm above the bottom. The offtakes were attached to the side of the tank 
at (X, Y )  = (0.5~5, B)  in experiments 1-43, at ( X ,  Y )  = (0, 0.5B) in experiments 7-9, 

13-2 
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and at ( X ,  Y )  = (O.O8L, 0) in experiments l(r13. Water was drawn through the 
offtakes using a small pump. 

The withdrawal flow was recorded using bead-streak photography (Maxworthy & 
Browand 1975). Because of the difficulties involved in recording the full three- 
dimensional structure of the flow, we used two lighting arrangements. In experiments 
1-9 we concentrated on measuring the flow field in a single horizontal plane. A slit 
of light 10 mm high, centred 90 mm above the bottom of the channel and covering 
the length and breadth of the test section, illuminated neutrally buoyant polystyrene 
beads (specific gravity = 1.04) suspended in the fluid. The position of the slit was 
chosen so as to  coincide with the open end of the withdrawal pipe, which we thought 
would be at the same level as the centre of the withdrawal layer. In  the experiments, 
however, the withdrawal layer formed approximately 510 mm below the end of the 
pipe. Two, and in some experiments three, 35 mm cameras, each covering roughly 
40% of the channel (with overlapping fields of view), were mounted on a frame 
approximately 1 m above the channel. 

In  order to obtain information about both horizontal and vertical structure of the 
withdrawal flow, we performed four experiments (10-13) using both an horizontal 
and a vertical light slit. The horizontal slit (again centred 90 mm above the bottom) 
illuminated the centre third of the tank, whereas the vertical plane covered a region 
approximately 200 omz in area centred 240 mm upstream (towards increasing X) of 
the sink and a t  mid-depth. The vertical and horizontal slits did not overlap. Two 
cameras were used with this lighting arrangement. I n  order to place beads a t  all 
depths, we prepared beads of various densities by boiling the raw, unexpanded beads 
in a saucepan (see Silvester 1978). 

After the tank was set in counterclockwise rotation a t  the desired speed, it was 
slowly filled, via a surface float, to a depth of 180 mm with linearly stratified fluid 
such that the density a t  mid-depth (the level of the light slit) was approximately that 
of the polystyrene beads used in recording the flow patterns. The vertical density 
profiles were measured by drawing off samples through holes drilled in the size of the 
channel and measuring each sample’s density using a calibrated refractometer. 

Despite the care taken in filling the tank, the fluid had not usually reached a state 
of solid-body rotation when filling was complete ; as seen in studies of spin-up (e.g. 
Buznya & Veronis 1971) the time required to achieve total spin-up, i.e. the absence 
of relative motions, is the diffusive timescale ( H 2 / v ) ,  - 10 h in our tank. For 
experiments 1-7, we generally waited 4 to 6 h after filling the tank before starting an 
experiment. We lengthened this period to approximately 18-24 h for the other 
experiments (8-13). Even then some relative motions remained. The deviation from 
solid-body rotation usually took the form of a set of 3 major clockwise circular 
vortices, approximately equal in diameter to the width of the channel, each having 
vertical vorticity roughly equal to 1-2 % off;  i.e. the initial conditions were within 
1-2% of solid-body rotation. I n  the experiment with the worst initial conditions, 
exp. 7, the residual vorticity was 2.5% off. In  contrast, for the ‘best case’, exp. 9, 
ih which the fluid was allowed 18 h to spin-up before the experiment was begun, the 
residual vorticity was 1.4% off. 

Each experiment consisted of starting the pump and then recording bead-streak 
images as the flow evolved. A summary of the experimental variables such as N,fand 
Q are shown in table 1. 
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FIGURE 3. Vertical velocity profiles measured in : (a) exp. 11 (S  = 0.25) at T = 60 s (a), 600 s 
(O) ,  1650 s (M), 2805 s (0 ) ;  ( b )  exp. 10 ( S  = 0.6) at T = 30 s (a), lo00 s (O) ,  3000 s (M); and, 
(c) exp. 13 ( S  = 1.25) at T = 60 s (a), 960 s (O),  2700 s (M). In  all three experiments Td = 3245 s. 
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Wz)/max iW31 
FIGURE 4. Dimensionless withdrawal-layer velocity profiles measured in exp. 11  (m), exp. 10 (O), 
and exp. 13 (0). These are the earliest profile from each of the set of profiles given in figure 3. The 
peak velocity measured in each profile and a withdrawal-layer thickness of 38 mm were used to 
normalize the various profiles. 

4. Results 
4.1. Vertical structure of the withdrawal flow 

The withdrawal layer that formed after the pump was started can be seen in figure 
3(a-c), plots of the vertical distribution of the horizontal velocity, as measured 
240 mm upstream of the sink and 100 mm off the wall, in three experiments (10, 11 
and 13) a t  various times. At the lowest value of S (exp. 11, figure 3a), there appears 
to be a considerable acceleration and thickening of the withdrawal flow. Flow 
acceleration and layer thickening are also evident in figure 3(c) (exp. 13, S = 1.3), 
although less so than in figure 3 (a). Figures 3 (a) and 3 (b )  both show velocity profiles 
that became asymmetric as each experiment proceeded. This asymmetry came about 
because the no-slip bottom remained at  a fixed distance below the sink while the 
distance between the (effectively no-slip) free surface and the sink decreased as water 
was withdrawn from the tank. This point will be discussed more fully in $5.2. 

The earliest profiles in figure 3(a-c) are replotted in figure 4, to show the initial 
structure of the withdrawal layer in all three experiments. I n  each case, these were 
taken approximately 60 s after the pump was switched on. In  this figure, we have 
normalized each velocity distribution by its maximum velocity. The dimensionless 
vertical distance has been calculated relative to the level of the sink, and has been 
scaled (for all three profiles) by an apparent withdrawal-layer half- thickness of 
37.5mm, rather by the estimated thickness of 25.7mm (table 1). This value was 
obtained by fitting the observed profiles to the cosine-bell distribution given in Spigel 
& Farrant (1984) (among others). As seen in figure 4, the scaled data, which include 
a factor of 4 variation in S, fit the theoretical profile reasonably well with one 
explainable exception: the profile from exp. 11 shows a withdrawal layer that is 
thicker below the sink than above. This can be attributed to the fact that N above 
the sink was larger than N below the sink (by approximately 14 %), because in a fluid 
having a vertically varying N ,  thicker withdrawal layers are found where N is smaller 
(Imberger et al. 1976). We shall present further discussion of withdrawal-layer 
thickness later. 
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FIOI-RE 5 .  Flow patterns in exp. 3 (5' = 0.35) at (a) T = 75 s, (b )  225 s, (c) 1065 Y, ( d )  2600 R. 
Approximately $ of tank is shown. The white arrows mark the direction of flow whereas the black 
arrows indicate the direction of wave propagation. In this experiment, T, = 1520 8.  
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4.2. Horizontal structure of the withdrawal flow 

The general evolution of the flow after the pump was started is shown in figure 5 
which is a sequence of photos taken during exp. 3 (8 = 0.35). This sequence typifies 
the experimental observations since it illustrates most of the effects of rotation on 
selective withdrawal found in this study: set-up of the flow by Kelvin shear waves, 
spin-up of a recirculating flow, and the breakdown of the flow into smaller gyres. 

In  the first photo, figure 5(a), (a 10 s exposure taken a t  T x 75 s after the pump 
had started) the clockwise withdrawal current extends upstream from the sink; it is 
strongest near the lower wall and decays as the opposite wall is approached. As 
suggested by Gill’s (1976) analysis, the withdrawal flow is anticyclonic (in this case 
clockwise). 

The low-speed region immediately above and to the right of the sink, and on the 
opposite wall, indicate& the presence of the Kelvin-shear-wave front located at X x 
6&80 cm (the flow immediately above the sink on the opposite wall is due to a 
vortex remaining from the filling process). Because the sink is located near mid- 
depth, even-mode shear waves should dominate the unsteady response (Imberger 
et al. 1976). Using (l), we calculate that the lowest even-mode (the fastest mode with 
C ,  = 3.72 cm/s and R, = 29 cm) Kelvin-shear-wave front should have travelled 
approximately this distance (allowing 30 cm of propagation path for the wall at 
X = 0) in the 75 s between the time the pump was started and the time figure 5(a) 
was taken. Whereas figure 5(a), taken a t  T x 155 s, shows no withdrawal current 
to the left of the sink, figure 5(b), taken a t  T x 225 s, shows the withdrawal current 
(which flows towards increasing X )  on the left side of the sink ( X  > $5) on the wall 
Y = B. Since the lowest-mode Kelvin wave generated when the pump was started 
should not have returned to the sink until T x 190 s, these observations support the 
hypothesis that the withdrawal layer is set up by Kelvin waves propagating 
cyclonically (counterclockwise) around the basin. 

Figure 5(c), taken a t  T x 1065 s, shows an intensification (spin-up) with time of 
the clockwise circulation. As a consequence of this strengthening of the flow, 10-20 % 
of the flow to the right of the sink bypasses it entirely. A small region of 
counterclockwise flow, bounded on the left by a stagnation point on the wall, exists 
around the sink itself. Figure 5(d), taken at  T x 2600 s (a 20 s exposure), shows a 
substantial change in the overall flow pattern over the course of the experiment : the 
main clockwise gyre has split into several smaller gyres, including two weak 
counterclockwise gyres interposed between three clockwise gyres. 

The general dependence of the shape of the flow on S can be seen in figure 6, photos 
taken a t  T = 540 s (T/Td = 0.20, 20 s exposure) in exp. 5 (S = 0.15), at T = 690 s 
(T/T, = 0.19, 30 s exposure) in exp. 6 (S = 0.6), and a t  T = 420 s (T/T, = 0.2, 
15 s exposure) in exp. 13 (S = 1.25). First, figure 6 shows that the flows observed 
at S = 0.15 and a t  S = 0.60 are qualitatively similar to that observed at S = 0.35 
(figure 5), i.e. a clockwise-rotating mean flow. At S = 1.25, the flow is still uni- 
directional (i.e. towards the sink), although there is considerable shear. The relatively 
small value of S in exp. 5 (figure 6a) is accompanied by a narrower withdrawal flow 
embedded in a relatively stronger recirculating flow than is observed a t  a similar 
time in experiments with larger values of S (exp. 3, figure 5 and exp. 6, figure 6b). 

The effect of sink location on the flow can be seen by comparing figures 5, 6(a) 
and 6(b) with figure 7 :  images of flows in exp. 9 (S = 0.40) recorded a t  T = 300 s 
(figure 7a) and T = 3600 s (figure 7 b ) .  In this experiment, the sink was located at one 
end of the tank rather than in the middle. Clearly there is little qualitative difference 
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FIGURE 6. Flow patterns a t  (TIT,) z 0.2 in (a) exp. 5 (8 = 0.15),, (b )  exp. 6 (S = O X ) ,  and ( c )  
exp. 13 (8 = 1.25). Note that the region shown in the photo in (c) is only half as wide as that shown 
in (a) and (b ) ,  and that the sink is not shown (it was further to the left on the wall at the bottom 
of the photo). To place this image in proper context, we have sketched streaklines in areas of the 
flow that were not photographed. 
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FIQURE 7. Flow patterns in exp. 9 (S = 0.4) at (a) T = 300 s and ( b )  3600 s. In this experiment, 
T8 = 2160 S. 

between the flows seen in figure 7 and those seen in figures 5 or 6 (i.e. before the onset 
of any instability). 

A more detailed picture of the spin-up of the withdrawal-layer flow is given in 
figure 8(a ) ,  which plots velocity profiles U ( Y )  at X = +L for five different times 
during exp. 9. The initial profile in figure 8 (a)  was taken after the lowest even-mode 
(R,  = 42 cm) Kelvin shear wave generated when the pump was started had passed 
the line X = BL. This profile shows a decay of U with distance from the wall at Y = 0. 
While this decay is similar to that which characterises a single Kelvin wave, it is 
not identical to that which would have been produced by the lowest even-mode 
Kelvin wave, as the observed profile is nearly linear (aside from the sidewall 
boundary layer) whereas the theoretical distribution gives an exponential decay with 
Y (cf. ( 5 ) ) .  The reason for this discrepancy is unclear. As the experiment proceeded, 
the sidewall boundary layers grew and a nearly constant-shear flow developed. The 
average value of this shear flow represents the net sinkward flow. This sinkward flow 
is generally weaker than the superimposed shear flow : in the last profile in figure 8 (a)  
the average velocity is approximately 0.5 mm/s, whereas the maximum negative 
velocities are nearly 3 mm/s. 

All the profiles shown in figure 8(a)  show an approximately linear variation in U 
across the channel (away from the two sidewall boundary layers). Since 6, the 
vertical vorticity, is almost exactly equal to - ay U ,  the nearly linear shear indicates 
that there is virtually no transverse variation in 6. In addition, as indicated by figure 
8 (6 ,  c ) ,  plots of U( Y )  at six different values of X at T = 300 s and at T = 3600 s, there 
is little longitudinal variation, except near the endwalls, in aY U and hence in 6. 

In figure 9 we plot U (  Y )  at different times in exp. 13 (8 = 1.25) a t  X = iL. In this 
sequence, the flow is directed towards the sink for all values of Y < 30 cm (note that 
Y > 30 cm is on the far side of the barrier which we used to divide the tank in 
half - see $3). Like figure 8, however, figure 9 shows a growth over time of a linear 
shear in the withdrawal flow. At  this station, the sheared flow is not sufficiently 
strong to cause a flow reversal like that seen in figure 8. However, as sketched in 
figure 6(c) ,  the flow did reverse directions approximately 2500 mm from the sink (i.e. 
out of the camera’s field of view). 

While the main body of the flows seen in both figures 8 and 9 has negative vorticity 
( N - 0.l.f to - 0.2f), the sidewall boundary layers possess strong positive vorticity. 
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FIauRE 8. U(Y)  in exp. 9 at (a )  X = 162 cm and T = 60 8 (a), 300 s (O) ,  1445 s (m), 2225 s (a), 
3600 s (A). ( 6 )  X = 50 cm (a), 100 em (O), 150 cm (H), 200 cm (a), 250 cm (A) and T = 600 s. 
(c) T = 3600 s (the symbols are the same as those used in (6 ) .  

For example, a calculation based on the last profile in figure 8(a)  gives 5 (X = iL, 
Y = 0)- +0.84f at  T = 3600 s. In most experiments (all except 1, 9 and 13), this 
boundary-layer vorticity appeared to lead to the breakup of the mean flow into the 
gyres seen, for example, in figure 5 ( d ) .  This process of gyre formation can best be 
described as resulting from the separation of the main flow in the corners of the 
tank. 
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y (cm) 
FIQURE 9. V ( Y )  in exp. 13: X = 162 cm and T = 60 s (a), 300 s (O), 1200 s (m), 1800 s (O) ,  

2700 s (A). 

FICRJRE 10. Breakdown of the withdrawal flow in exp. 7 ( S  = 0.13). The times are (a)  900 s, 
(b)  1245 a, (c) 1575 s, (d )  1800 s, (e) 2115 s. 
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P ( z )  (4 
FIGURE 11. Density profiles in (a) exp. 11 (8 = 0.25) and ( b )  exp. 13 (8 = 1.25) taken before (0) 

and after (0) each experiment. 

A n  example of this breakup of the mean flow is shown in figure 10, a sequence of 
photos taken in exp. 7 (S = 0.13). The first photo (10a) shows a general clockwise 
flow within which are embedded two clockwise vortices (remnants of the initial 
conditions) ; these were subsequently incorporated into the mean flow. The second 
photo (lob) shows the start of the breakup of the flow: the withdrawal current 
separates from the walls in the corners a t  (X, Y )  = (0, 0) and (L,  B) ,  forming two 
regions of positive vorticity. The sidewall boundary layers continue to feed positive 
vorticity into these regions, leading to the development of two counterclockwise 
vortices. Owing to induction (Batchelor 1967, p. 517 ff.), these vortices should 
migrate towards the centre of the tank ; this migration is initially suppressed by the 
withdrawal flow, which acts to confine the vortices to the corners. However, when 
the vortices have attained sufficient strength ( ~ O C ) ,  their self-induced velocity is large 
enough to enable them to move against the withdrawal current towards the centre 
of the tank (loci), where they become established as counterclockwise gyres between 
alternate clockwise gyres (10e). Once nestled between clockwise gyres, the 
counterclockwise gyres are spun-up rapidly by the pinched-off withdrawal current 
that results. The resulting flow is quite similar in appearance to that observed in 
convection experiments (Hide & Mason 1975) or in stress-driven upwelling 
experiments (Narimousa & Maxworthy 1985), although the underlying dynamics of 
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-Water surface , I Z = + H +  
W I dW/dZ 11 14 

-Withdrawal layer * Z = 0 (sink) 

Z = - 6  

I 
-Bottom of channel 

FIQURE 12. Definition sketch for the model problem. 

the gyre formation, i.e. the process of boundary-layer separation, appears to be 
somewhat different than that which characterizes these other unstable rotating 
flows. 

4.3. Effect of juid withdrawal on density structure 
The effect of withdrawal flows of this type on the density structure of the fluid in the 
tank is shown in figure 11, where we present pairs of density profiles taken before the 
pump was turned on and after it was turned off in exps 11 and 13. The shapes of 
these latter profiles are typical of withdrawal flows (Spigel & Farrant 1984) in that 
they show depletion of fluid below the level of the sink, and a nearly uniform 
downwards motion of fluid a short distance ( x  S) above the sink (as in the ‘pack-of- 
cards’ model discussed by Imberger et al. 1976). More specifically, Spigel & Farrant’s 
measurements for a non-rotating selective withdrawal flow show clearly that the 
density field below the withdrawal layer, defined using the vertical profile of the 
horizontal velocity (see Ivey & Blake 1985), is unaffected by the withdrawal 
process. 

In contrast, our measurements (with rotation) show that the withdrawal layer 
defined in terms of the vertical profile of the horizontal flow (which grew in vertical 
extent with time) was thicker than the withdrawal layer defined in terms of 
modification of the density field. Figure 11 shows that according to this latter 
definition, the withdrawal-layer thickness (6) must have been less than 40 mm in 
both exps 11 and 13, i.e. it was not nearly as thick as the velocity profiles measured 
in either experiment lead us to believe. On the other hand, this density-based upper 
bound on 6 is reasonably close to the value of S (38 mm) we estimated using the initial 
velocity profiles. 

5. A model of spin-up and its possible effects on withdrawal dynamics 
5.1. The model equation 

In this section we present a model of the experimentally observed spin-up process. 
In particular, we try to explain the mean features of our observations: the lack of 
horizontal variations in the vertical relative vorticity, 5, except in the sidewall 
boundary layers and near the sink ; and the fact that the values of ([/f) we observed 
at mid-depth in the experiments were in the range of -0.1 to -0.2, rather than 
attaining values much closer to - 1.0 (the maximum possible). We consider the case 
where ( N / f )  9 1, so that stratification suppresses Ekman suction (Greenspan 1968) 
and, initially, the withdrawal-layer thickness is not affected by rotation. Once we 
have calculated 5, we can then calculate the recirculating velocity field and finally, 
because the longitudinal flow is in geostrophic balance, the distortion of the density 
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field necessary to satisfy the thermal wind relation. The geometry of the problem is 
sketched in figure 12. 

In non-rotating selective withdrawal, the vertical velocity is approximately 
independent of horizontal position when the Froude number, &/(NH2B) ,  is small 
enough (Imberger et al. 1976). Thus, the means by which negative vorticity can be 
created, vortex compression, is spatially uniform. If horizontal variations in c are 
small initially, they will tend to remain so. Thus we can use a one-dimensional 
advective-diffusion equation to model the evolution of c; the appropriate equation 
is 

This equation should be valid for T - T8 (see (9)). To solve (10) we must assume a 
form for W .  According to Spigel & Farrant (1984), 

W ( Z )  = - (&/26A) ((2 + 6) + (6/n) sin (7cZ/6)), - 6 < Z < + 6 

= - ( & / A ) ,  +6 < z  
= 0, -6 2 2, (11) 

where Q is the volume flow rate, 6 is half of the total withdrawal-layer thickness, and 
A is the surface area of the reservoir (for a rectangular geometry A = BL). Equation 
(11)  implicitly defines 6 in terms of modification of the density profile by vertical 
advection. The Z-axis is defined so that Z = 0 is the centre of the withdrawal layer. 
In order to isolate the flow associated with spin-up, we assume that c = 0 a t  T = 0. 
On the no-slip bottom, 2 = -H-,  5 = 0, and, to model the laboratory experiments, 
we also assume that 4 = 0 a t  the free surface, Z = H+ (because of surface films). In 
most of the results we shall discuss H+ = H - ;  this symmetrical placement of the sink 
corresponds to the initial conditions of all of our experiments. In  order to model the 
asymmetry which we hypothesized was due to location of the free surface relative to 
the sink, we also considered a case in which H+ + H-. 

A useful form of (10) is one written in terms of the non-dimensional variables 
(denoted by *): 

5 = fc*, T = T8t*, 2 = 6z*, W = (&/&I) w*, (12) 

which reduces (10) to (dropping the *) 

Equation (13) contains a single parameter, 

Re = (&6/vA). (14) 

Re is a Reynolds number based on the vertical velocity; it is also the ratio of the 
diffusion timescale ( a 2 / v )  to T8. This scaling indicates that when Re = 0(1), none of 
the terms appearing in (11) can be omitted. Lastly, once (11) has been made 
dimensionless, the boundary conditions are applied a t  z = f ( H * / S )  = f A*. 

Equation (13) was solved numerically using a simple, explicit finite-difference 
scheme (centred differences, first-order in time) using a grid with nodes spaced 
0.2 units apart. The time interval was chosen so as to satisfy the Courant- 
Friedrich-Lewy condition (0.5Az2 Atp1 > Re-') for the given node spacing (Dahlquist 
& Bjork 1974). In order to keep the solution technique simple, it was impossible to  
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FIQURE 13. Calculated profiles of [, the dimensionless vertical vorticity for symmetrical 

boundaries. The symbols correspond to t = 0.1 (a), 0.3 (O), 0.9 (m). 
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c* 
FIQURE 14. Calculated profiles of [, the dimensionless vertical vorticity for asymmetrical 

boundaries. The symbols correspond to t = 0.1 (a), 0.3 (O), 0.9 (H). 

account for the fall of the free surface with time. This is equivalent to assuming 
that A+ 9 1. We did attempt to qualitatively represent the effect of the free- 
surface position on the vorticity distribution by carrying out a calculation in which 
A+ = 1.4 while A- = 2.4. This would correspond to conditions existing in our tank 
when t = 1. 

5.2. Results 

Plots of calculated values of C(z) at different times for symmetrically placed 
boundaries are given in figure 13. The parameters chosen for the calculation, A* = 
2.4 and Re = 0.43 are representative of the experimental conditions (based on the 
observed withdrawal-layer thickness of 38mm and the initial depth) found in 
exps 10-13. Values of these two parameters appropriate to the rest of the 
experiments are reasonably similar to those uaed in the numerical solution ; therefore, 
the behaviour shown in figure 13 should be qualitatively similar to that which would 
be calculated for all of the experiments. 
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t* 

FIGURE 15. A comparison of calculated (solid line = symmetric, dotted line = asymmetric) and 
measured values of the dimensionless vertical vorticity C(z = 0, t )  in exps 11 (a), 10 (O) ,  13 (m). 

The profiles of 5 given in figure 13 show that withdrawal-layer vorticity increases 
with time and diffuses vertically. Evidently, diffusion is sufficiently strong that the 
vorticity distribution remains nearly symmetric about z = 0, rather than showing 
significantly larger values of 5 in the lower part of the withdrawal layer. The reason 
we suggest any asymmetry for symmetrically placed boundaries is that above z = 0 
there is downwards advection of less spun-up fluid whereas below z = 0 there is 
downwards advection of more spun-up fluid. In  terms of (13), w (d[/dz) is negative 
above the sink and retards the local spin-up of vorticity, whereas it is positive below 
the sink, and thus aids the local spin-up process. Although the calculated profiles are 
nearly symmetric in this case, advection cannot be neglected : simpler versions of (1  3) 
that neglect wa,!: give somewhat larger values of 5 than when it is included. 

This diffusive behaviour of the withdrawal flow is similar to that observed by 
Kranenburg (1980) in his experiments with an homogeneous layer overlying a 
linearly stratified layer. Because he withdrew fluid from the homogeneous layer, 
there was no direct spin-up of the stratified region ; instead, spin-up there was due 
entirely to diffusion. 

The results of the calculation made with asymmetrically placed boundaries is 
shown in figure 14. Here again, the effects of diffusion are quite strong. Initially the 
profiles are nearly symmetrical about z = 0, but, because of the placement of the 
upper boundary, the distribution of 5 has become quite asymmetric by the time 
t x 0.9. Since the horizontal velocity is proportional to 6 (see (16) below), we can 
directly compare the shapes of these profiles of 5 with the profiles of U ( 2 )  given in 
figure 3. In spite of the simplicity of the model, this comparison is quite good, 
indicating that the observed asymmetry is due to the location of the free surface 
relative to the level of the sink. 

The time dependence of the spin-up process is shown in figure 15, in which we 
compare theoretical (both cases) and experimental values of [ ( z  = 0, t)  obtained from 
the bead-streak data. This comparison between experiment and theory is quite good. 
Because the theory does not account for the shear set up by the initial Kelvin waves, 
the observed values of 5 are larger than their theoretical counterparts a t  the outset 
of each run. However, this initial vorticity retards the spin-up (this is the effect of the 
term 5 (dwldz) in (13)), so that as t increases, the observed values of 5 approach (from 
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FIQURE 16. Sketch of the velocity profile indicated by (19). 

above) the calculated curve. Note also that the two theoretical curves are virtually 
indistinguishable until t x 0.4, and only differ by about 10% when t % 1. 

Most importantly, there is no systematic deviation of the observations from the 
calculated curve although there is a factor of 4 difference in 8 among the three sets 
of experimental points plotted in figure 14. If 6 (appearing in (10)) had increased with 
time because of rotation, as Whitehead (1980) suggests, 6 would have increased more 
slowly than if 6 had remained constant. Thus, the agreement of theory and 
observations lends further weight to our suggestion that for rotating selective 
withdrawal, it is important to distinguish between the withdrawal layer defined in 
terms of advective modification of the density profile and that which is defined in 
terms of the horizontal flow induced by the outflow in the presence of rotation. 

5.3. T h e  spun-up velocity jield 
Once we know 6, we can solve for the induced flow. We have two equations for U and 
I' (returning to dimensional variables) : 

dW 
dZ 

a,u+a,v=---, 

a,u-a,v= ~ ( z , T ) ,  (15b) 

where W and 6 are known functions of Z and T. A solution to this set of equations, 
appropriate to a line sink, or a point sink for ( z /B)  > 1 (Spigel & Farrant 1984), 
is 

where 

dW 
dZ u =(a, 'Y) Y + - ( ( L - X ) ,  

subject to the boundary condition that 

Y=O 

on the boundary of the tank. By elementary methods, we find that 

mnX , nxY 
(m2 x2B2 + n27c2Lz)-1 sin - sin - O0 16L2Bz 

L B '  
Y = Z  x--- 

m-lA-l nmn2 
(both odd) 
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By neglecting X-variations in the flow, a simpler solution is obtained; i.e. by 
making a boundary-layer-type approximation to flow variations, (15) can be 
integrated to give 

119) 

Equation (19) describes a flow that is the superposition of a linear shear flow and a 
two-dimensional sink flow. The sink flow is identical to that which would be found 
in the absence of rotation for a line sink; the flow into a point sink (the experimental 
configuration) would differ from that into a line sink only for X < B (Spigel & 
Farrant 1984). The velocity field represented by (19) is sketched in figure 16 (where 
we have also added in sidewall boundary layers schematically). The similarity 
between the shape of the velocity profile sketched in figure 16 and the shapes of the 
experimental curves plotted in figures 8 and 9 is striking, and suggests that the model 
provides a reasonable description of a flow observed prior to the onset of the 
instability seen in figure 10. 

d W  
dz 

u = ( Y  -@) .g+- (L-X). 

5.4. Modijcations of the density field by spin-up 
The velocity field described by (19) requires that the density field become distorted 
in the (Y ,  2)-plane in order to prevent the Coriolis force (fU) from accelerating a 
transverse flow ( V ) .  Here we examine whether or not this deformation is comparable 
to 8. A scale analysis shows that the lowest-order Y-momentum equation is the so- 
called thermal wind equation (e.g. Gill 1982) 

ja,u = -NS-- ,  d7 
d Y  

where q( Y ,  2, T )  is the displacement of an isopycnal surface from its level position. 
Thus 

d2W _-  
dY N2 

We can drop the second term on the right-hand side of (21) because it is much smaller 
than the first term (the ratio of the two terms is -&(fSB2)-l < 1) .  Therefore, 
integrating (21) with respect to Y, using the condition 

we find 

ydY = 0, l 
According to (23), the maximum isopycnal displacements (1.111) occur a t  Y = 0, B 

(the walls) and a t  the depth where I a, 61 is maximum. For example, we find from 
figure 13 that the maximum value of azCx 0.15(f/S) a t  T / T , x  0.75. Thus, the 
maximum value of 7, normalized by S is (for the experimental parameters) 

( 7 / ~ ) ~ ~ ~  x 8.3 x 10-3 s-2. 

That is, for experiments 10, 11 and 13 we find that (q/S)max ranges from 2.3 x lop2 to 
5 x Thus, the spun-up flow only slightly distorts the density field, and thus does 
not suppress spin-up or alter withdrawal dynamics in the sense of thickening the 
withdrawal layer. 
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6. Discussion and conclusions 
Our experimental results can be summarized as follows : when the sink is switched 

on, Kelvin shear waves are generated which propagate around the perimeter of the 
tank setting up an anticyclonic selective-withdrawal current. Owing to the 
compression of filaments of planetary vorticity in the withdrawal layer (albeit 
moderated by vertical diffusion of vorticity) this withdrawal current accelerates so 
that the vertical vorticity is nearly uniform in any horizontal plane. Triggered by 
boundary-layer separation, this shear flow eventually breaks down, leading to a state 
wherein the withdrawal current is confined to a narrow jet threading its way between 
counter-rotating gyres each having a diameter roughly equal to the width of the 
tank. 

Both a qualitative analysis of the initial setting up of the withdrawal layer, and 
a simple analytical model of the spin-up process, suggest that S, the Burger number 
defined using the withdrawal-layer shear-wave speed, is a useful measure of the 
effects of rotation on selective withdrawal. As seen in our experiments, the chief 
differences among flows having different values of S are the scale of decay of the 
initial velocity field (i.e. the Rossby radius of the initial flow) and the relative 
strengths of the sinkwards flow and the recirculating flow. 

The latter difference really reflects the dependence of the flow on one other 
parameter. If we consider the ratio of the withdrawal current, U, - Q(SB)-l to the 
recirculating current U, - fB, we arrive at  a new Rossby number, 

RoQ = &(fSB2)-l (24) 

which measures the relative strengths of the two flows. For a point sink we can 
express RoQ in terms of S ,  viz. RoQ = (S/B)S. Because (SIB) < 1, we find that 
RoQ < 1, even if S > 1. 

A comparison of velocity and density-field data shows that the withdrawal layer 
defined by the velocity field thickens with time and, soon after the start of the 
experiments, is thicker than the withdrawal layer defined by advective changes in 
the density profile. In terms of this latter basis for defining 8, our data do not show 
any thickening of the withdrawal layer due to rotation. Indeed, the analysis given in 
$5 leads us to conclude that the thickening of the velocity-based withdrawal profile 
was due entirely to diffusion of the relative vertical vorticity created in the collapsing 
withdrawal layer. 

The reasons why rotation might not influence the density-based withdrawal-layer 
thickness are best seen by considering several possible scalings that attempt to find 
the relationship between withdrawal-layer thickness and rotation rate. First, 
consider the analysis given by Imberger & Hamblin (1982). They assume a ‘thermal- 
wind’ balance based upon steady-state conditions and solve for 6 and b, the current 
thickness and width. Setting U N N6, and then balancing the transverse pressure 
gradient and Coriolis force, they find 

implying that 

However, if the outlet is a point sink, the withdrawal layer must have at  least a 
thickness - (&/N) i  (for an inertial flow), so that unless ( f / N )  - 1, the isopycnal 
displacements due to rotation will be less than those required by inertia. Hence, 



400 S. C. Monismith and T .  Maxworthy 

following Imberger & Hamblin’s argument, rotation will not affect the layer 
thickness unless ( f / N )  - 1. Given that f - s-l in many environmental 
applications, the preceding condition restricts their analysis to weak stratifications 
only. 

An alternative view, one ignoring the spin-up process, is to assume a slight 
transverse deflection 7 that is superimposed on a pre-existing withdrawal structure. 
Again balancing the transverse pressure gradient and the Coriolis force, assuming an 
unknown transverse lengthscale b, and estimating the perturbation pressure as 

P - pN267, 

as estimate for 7 when the outlet is a point sink is 

Thus before spin-up, the transverse isopycnal displacements are much smaller than 
the layer thickness. Furthermore, confirming Gill’s (1976) analysis, the arguments 
leading to (27) do not allow us to estimate b through consideration of a steady 
momentum balance. Instead, the width of the withdrawal current is set by the 
superposition of several Kelvin-wave velocity fields, each having its own charac- 
teristic transverse lengthscale ; i.e. b is determined by an unsteady momentum 
balance. 

Last, we consider the fully spun-up flow for which a, g - (f/S), implying 

(T/S) - (f”B”)/(N262) = s+. (28) 

Thus, the Burger number, S, not only measures the importance of rotation in 
determining the establishment of the flow, it also measures the relative distortion of 
the density field by inertial and rotational effects. However, because of the small 
constant of proportionality (e.g. 8 x in the present case), only when S -4 1 are 
isopycnal displacements, and hence (possibly) withdrawal-layer thicknesses, larger 
than in the non-rotating case. 

To put our study into perspective, it  is useful to calculate S, Re and RoQ for 
prototype flows. For a medium-size reservoir, B - 500 m, 6 - 5 m, Q - 1 m3 s-l, 
f - m2 s-l; we calculate S - 1 ,  Re = 0.02, and 
Ro, = 0.01. Thus we conclude that in the absence of other influences, the flow would 
spin-up in a manner similar to that observed in our experiments ; given enough time 
(which for L - 5 km, would be T6 - 100 days), we expect that those currents induced 
by rotation would eventually exceed those due to withdrawal alone. 

s-l, N - lop2 s-l, and v = 
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